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Abstract

An isomorphism between the Lobachevsky and de Sitter’s world geometries with the symplectic
geometry and the Lie algebra of binary quadratic forms is used to derive the altitudes concurrence for
the Lobachevsky and de Sitter triangles.
© 2004 Elsevier B.V. All rights reserved.
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The Lobachevsky plane may be considered[1] as the projectivized version of the space
of the positive definite binary quadratic forms. This disc inRP2 forms the Klein model of
the Lobachevsky plane, the complementary Möbius band forming the de Sitter world of
the hyperbolic binary forms on the same plane (considered also up to a multiplication by
a nonzero constant). The metrics are defined as the determinant’s second differential form
on the determinant one (minus one) forms hyperboloids.

This Lobachevsky plane Riemannian metrics and this de Sitter’s world Lorentzian
pseudoriemannian metrics are invariant under the group SL(2,R) of the symplectic
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linear mappings of the plane{(p, q)}. The quadratic forms on this symplectic plane,
ap2 + 2bpq + cq2, are forming the 3-spaceR3 with coordinatesa, b, c. The group ac-
tion preserves the (quadratic) determinant of the form,∆ = ac − b2, and the Lobachevsky
plane is the projectivization of the conic space∆ > 0, while the de Sitter world is the pro-
jectivization of the complementary conic space,∆ < 0. The cone∆ = 0 projective version
is the absolute circle, bounding the Klein model disc.

We shall therefore consider the points of the Lobachevsky plane and of the de Sitter world
as “forms” (a “form” [a : b : c] being the quadratic formap2 + 2bpq + cq2, considered up
to a nonzero constant factor).

The points of the de Sitter world can also be interpreted as the straight lines of the
Lobachevsky plane (and viceversa): the two tangent lines from this de Sitter point ofRP2

to the absolute circle define two tangency points on the absolute, and the Lobachevsky line,
identified with the de Sitter point, joins them (being its projectively dual line for the duality
defined by the absolute).

Similarly, the Lobachevsky lines, containing a common Lobachevsky disc point, can be
interpreted as the de Sitter world points, at each of which intersect the two tangent lines
of the absolute circle at its two points on a Lobachevsky line, chosen among those lines,
containing the original Lobachevsky point.

All the Lobachevsky lines, passing through a given point of the Lobachevsky disc, are
therefore interpreted as forming a curve in the de Sitter world. This curve is the de Sitter
world straight line (which is a projective line, not intersecting the Lobachevsky disc, in
RP2). This line is projectively dual to the original point of the Lobachevsky disc (in the
sense of the projective duality, defined by the absolute circle).

The goal of the present article is to translate the altitudes intersection property of the
Lobachevsky triangles to this quadratic forms geometry1.

The space of quadratic forms on the symplectic planeR2 (with Darboux coordinates
p, q of the symplectic structureω = dp ∧ dq) is the Poisson brackets Lie algebra (since
the Poisson bracket of two quadratic forms is a quadratic form). The group SL (2,R) acts
linearly on the spaceR3 of the quadratic forms onR2.

We start with the interpretation of the Poisson brackets in the terms of the geometry of the
Lobachevsky plane of positive definite quadratic “forms” and of the de Sitter plane of the
hyperbolic “forms”. This Poisson bracket operationR3 × R3 → R

3 is intrinsic (invariant
under the above group action of SL(2,R) onR3).

Theorem 1. The Poisson bracket form of two positive definite forms is the hyperbolic form,
represented by the straight line, joining the original two points of the Lobachevsky plane in
Lobachevsky geometry.

This bracket form is, therefore, hyperbolic.

Proof. We shall use the explicit expression(1) of the scalar product of quadratic
forms, polar to the absolute circle equation∆ = 0, where∆(ξ = ap2 + 2bpq + cq2) =
ac − b2.

1 The Euclidean triangle altitudes concurrence property interpretation in terms of the SO(3) Lie algebra (of
vector products in the oriented Euclidean 3-space) Jacobi identity had been explained by the author many years
ago; this Euclidean property proof has contained already the present paper Theorem 4.
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The polar scalar product is a symmetric bilinear form on the space of the binary quadratic
forms, coinciding with∆ on the diagonal:

2∆̃(ξ′, ξ′′) = a′c′′ + c′a′′ − 2b′b′′. (1)

For two elliptic quadratic forms,A = αp2 + βq2, B = γp2 + δq2, we find their Poisson
bracket to be the hyperbolic form

{A,B} = 4(αδ − βγ)pq. (2)

The corresponding projective line connects the pointsA andB, since formulas(1) and
(2) show that

∆̃(A, {A,B}) = ∆̃(B, {A,B}) = 0. (3)

This example of the pair (A,B) suffices for the proof of Theorem 1, since any two elliptic
forms are diagonalizable by the same choice of symplectic coordinates.�

Theorem 2. The Poisson bracket form of a positive definite form with a hyperbolic
form is represented by the straight line of the Klein model, which is orthogonal to the
Lobachevsky straight line, corresponding to the hyperbolic original form, and goes through
the Lobachevsky plane point, corresponding to the original positive definite form.

Proof. We use once more the identity (2), choosingαβ > 0 andγδ < 0 to represent the
positive definite formA and the hyperbolic formB. The eigenvectors theory shows that
this example is universal, since the positive definiteness ofA suffices for the common
diagonalization ofA andB by the same choice of symplectic coordinates.

The two equations (3) show, in this case, that the line corresponding to{A,B} contains
the pointA (the first equation) and is orthogonal to the lineB (the second equation). To
deduce the orthogonality from the secondEq. (3) is easy, but, anyway, the explicit form of the
Poisson bracket (2) proves this orthogonality. The projective meaning of this orthogonality
condition for two Lobachevsky lines in the Klein model is that each of the lines passes
through the point, dual to the other line (with respect to the duality defined by the absolute
circle). �

Theorem 3. The Poisson bracket form of two hyperbolic forms corresponds to the in-
tersection point of the two projective lines corresponding to the two original hyperbolic
forms.

Proof. The two hyperbolic forms eigenvalues theory shows2 that they are either diagonal-
izable by the same symplectic basis choice, or reducible to the special pair of forms,

A = p2 − q2, B = λpq.

In the first case the bracket is hyperbolic and the corresponding projective plane point
belongs to both dual straight lines, according to the identity (3).

2 It can be deduced from the Lobachevsky geometry as well: it means that a pair of intersecting Lobachevsky
lines is defined, up to a Lobachevsky motion, by their angle.
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In the second case the Poisson bracket calculation provides the answer

{A,B} = 2λ(p2 + q2), (4)

which form is elliptic, corresponding, therefore, to an intersection point in the Lobachevsky
disc of the Klein model. This point belonging to the lines, dual to the formsA andB, is
proved by the identities (1) and (4):

2∆̃(A, {A,B}) = 2λ − 2λ = 0,
2∆̃(B, {A,B}) = −21

2λ · 0 = 0. �

Theorem 4. If three nonzero vectors ofR3 verify the identityf + g + h = 0, the
three corresponding points of the projective plane lie on a projective straight line, and
the corresponding three projective lines (of the dual projective plane) have a common
point.

Proof. The relationf + g + h = 0 for some representative vectors of three points of the
projective plane means the existence of a linear dependence betweenanythree representa-
tives of the points, proving the first statement of the theorem. The second statement follows
from it, since the duals of three points, belonging to a line, are three lines, containing the
point, dual to this line. �

Problem.Find the geometrical condition of two forms, one elliptic an the other hyperbolic,
equivalent to the belonging of the point, corresponding to the elliptic one, to the line,
corresponding to the hyperbolic one.

Answer:The zero directions of the hyperbolic form should be orthogonal in the metrics
defined by the elliptic form.

Theorem 5. The three altitudes of a Lobachevsky plane triangle are concurrent (have a
common intersection point).

Proof. DenoteA,B andC the sidelines of the triangle. We denote the same way the
corresponding three (hyperbolic) quadratic forms. Their Poisson brackets

{A,B} = c, {B,C} = a, {C,A} = b

are the (elliptic) forms, representing the three vertices of the original triangle (according to
Theorem 3).

The standard notation of this triangle would be (a, b, c), the vertexa being opposite to
the sideA (and so on).

Consider the altitudes of this triangle. The line, passing bya and orthogonal to the side
bc = A, is, according to Theorem 2, the “form”, which corresponds to the Poisson bracket
of a and ofA,

(altitude froma toA) ∼ ({{B,C}, A}).
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The three altitudes of the triangle(a, b, c) are thus the geometrical versions of the three
quadratic forms

(f, g, h) = ({{B,C}, A}, {{C,A}, B}, {{A,B}, C}).

According to the Jacobi identity (for the Poisson brackets Lie algebra of the quadratic forms
on the symplectic plane with Darboux coordinates (p, q)), the sum of these three quadratic
forms is the zero form,f + g + h = 0.

Applying Theorem 4 to these three forms, we conclude that the three altitudes lines have
a common point inRP2, proving Theorem 5. �

In the case, where the triangle (abc) angles are less thanπ/2, the intersection points lie
inside the triangle, and hence do belong to the Lobachevsky plane part of the projective
plane3.

It is easy to provide an example of a triangle (with an angle greater than 2π/3), for which
no altitudes have a common point in the Lobachevsky disc.

In this case our Theorem 5 shows the existence of a common intersection point of all the
three altitudes projective lines in the de Sitter world (or on the separating absolute).

Remark.Our Theorem 5 proves also the altitudes concurrence for thedeSitter triangles and
for themixed triangles, some of whose vertices (and or sides) are Lobachevsky plane points
and lines, the others being de Sitterian (belonging in the separating case to the absolute for
the vertices, or being tangent to it for the sides).

To avoid the angles in the altitudes description, we might call two projective lines of the
Klein model orthogonal, if one (each) of them contains the point, dual to the other one. In
the Lobachevsky disc, it is just the Lobachevsky orthogonality definition (providing also
the de Sitter Lorentzian metrics orthogonality, when the intersection point is in the de Sitter
part of the Klein model).

Reformulating the altitudes concurrence theorem in the de Sitter or mixed triangles
case, we might eliminate the Lobachevsky geometry mentioning, formulating the results as
several elementary projective geometry statements. One might use the Jacobi identity and
other theorems of the quadratic forms symplectic algebra to obtain new results of projective
geometry.

Example.Consider three nonintersecting Lobachevsky lines ((AB), (CD), (EF )), repre-
sented in the Klein model by three chords of the Lobachevsky disc, whose endpoints follow
the absolute circle in the order (ABCDEF ) (seeFig. 1).

Construct the three intersection points

(CD) ∩ (EF ) = α, (EF ) ∩ (AB) = β, (AB) ∩ (CD) = γ

3 One might replaceπ/2 by 2π/3, (if all the angles are smaller than 2π/3, the altitudes of a Lobachevsky triangle
intersect inside the Lobachevsky disc, while for any angle greater than 2π/3, there exists a Lobachevsky triangle
with such an angle, whose altitudes have no common Lobachevsky points). Namely, the triangles, separating
the two cases (having the orthocentre on the absolute) are isometric to the triangles with vertices{x,−y, z =
ixy/(1 + xy)},0 ≤ x ≤ 1, 0 ≤ y ≤ 1, therefore|z| ≤ 1/2, in the Klein model.
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Fig. 1. The Inscribed Hexagon Theorem as the de Sitter altitudes concurrence property.

of the projective lines (these points lie inside the de Sitter part of the projective plane of the
Klein model).

Consider also the three dual points

M = (AB)∨, N = (CD)∨, K = (EF )∨

(the pointM is the intersection point of the two tangents of the absolute circle at its inter-
section pointsA andBwith the chord (AB) and similarly forN andK).

Inscribed Hexagon Theorem.The three lines(αM), (βN) and(γK) are concurrent (have
a common point).

Proof. The projective line (αM) is the altitude of the de Sitter triangle (α, β, γ), starting at
pointα, since the pointM is dual to the side (AB) = (βγ). Similarly, (BN) is the altitude,
issued fromβ, and (γK) from γ, hence their concurrence is the altitudes concurrence
property for the de Sitter triangle (αβγ). �

Corollary 6. The three dual points,(αM)∨, (βN)∨ and (γK)∨ lie on a projective line in
RP2.

These three points are the intersection points of the three pairs of lines: (KN) ∩ (AB),
(MK) ∩ (CD) and (NM) ∩ (EF ).

We see that the Inscribed Hexagon Theorem is one more geometrical manifestation of
the mathematical physics symplectic Jacobi identity.
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